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Resumen�Observation problem for systems governed by
Partial Differential Equations (PDE) has been a research �eld
of its own for a long time. In this paper it is presented
an observer design for a class or parabolic PDE's using
sliding modes theory and bacstepping-like procedure in order
to achieve exponential convergence. A Volterra-like integral
transformation is used to change the coordinates of the error
dynamics into exponentially stable target systems using the
backstepping-like procedure. This gives as a result the output
injection functions of the observer which are obtained by
solving a hyperbolic PDE system. Sliding modes are used to
�nd an explicit solution to the hyperbolic PDE system and
to make the observer gains to be discontinuous which have
well known advantages. Theoretical results were proved using
the Lyapunov theory. A numerical example demonstrates the
proposed method effectiveness.

I. INTRODUCTION

I-A. PDE Observers

There exist a great deal of systems which dynamical
behavior are described by Partial Differential Equations
(PDE), (Schiesser y Grif�ths, 2009). In recent years, this
�eld has broadened considerably as more realistic models
have been introduced and investigated in different areas
such as thermodynamics, elastic structures, �uid dynamics
and biological systems, to name some few (Imanuvilov y
Bing-Yu, 2005), (Mondaini y Pardalos, 2008).
In spite of the fact that optimization and control of

systems governed by partial differential equations and more
recently by variational inequalities is a very active �eld
of research (Kunisch y Tröltzsch, 2007), no much have
been developed for observer design. Two main results of
this �eld are described in (Krstic y Smyshlyaev, 2005) and
(Orlov, 2009).
The �rst one introduces an observer design for linear

parabolic PDE. It involves a linear Volterra transformation
of the observer error system into a target system which
is exponentially stable. If the kernel transformation, that
satis�es a linear hyperbolic PDE, is causal, the output
error injection functions in the structure of the observer
proposed there are then given and depends on this kernel.
Some application of this obsever are presented in (Krstic y
Smyshlyaev, 2007), (Vazquez y Krstic, 2005).
On the other hand, the second result describes how

an in�nite-dimensional Luenberger state observer, which
utilizes a �nite number of measurements, is constructed to
provide estimates of the state of the in�nite-dimensional
system. Furthermore, the in�nite-dimensional Luenberger

state observer can be replaced by its sliding mode coun-
terpart as shown in (Orlov y Dochain, 2002). This takes
advantage of the backstepping method for PDE and the
sliding mode theory for in�nite dimensional systems. The
next subsections describes the basis of these couple of
techniques.

I-B. Backstepping Theory for PDE

Backstepping was developed to stabilize dynamical sys-
tems and is particularly successful in the area of nonlinear
control, (Krstic y Kokotovic, 1995). The basic idea of
backstepping technique for in�nite dimensional systems
was developed in (Balogh y Krstic, 2004), where sta-
bility properties of a class of LTV difference equations
on an in�nite-dimensional state space were studied. This
LTV difference equations were obtained because of the
original systems discretization (which is wanted to be
transformed), target system (in which the original system
will be transformed) and the proper integral transformation
which results in recursive relationships backstepping-like.
Stabilization of the original system is guaranteed if the
kernel of the transformation is causal. The extension to this
idea into systems governed by PDE for state estimation was
proposed in (Krstic y Smyshlyaev, 2005). This causality
of a backstepping-like transformation, applied to the error
system leads to an exponentially stable target system, is
needed to obtain the output injection functions of the
proposed observer.

I-C. Sliding Modes

Sliding mode control applied into systems modelled by
ordinary differential equations have guaranteed state esti-
mation with a certain degree of robustness (Benallegue y
L, 2007), (Davila y Poznyak, 2006), (Davila y Levant, 2005)
and (Fridma y Yan, 2008). Extending this powerful method
into distributed parameter systems, more speci�c, into
systems modeled by PDE have been recently researched
(Orlov, 2009). However, �nite time convergence that is
possible, under some considerations, in �nite-dimensional
systems, is only possible in plants which dynamics could be
represented by PDE if measures can be done in whole space
for all time. In cases where measure is only possible in the
boudary, it is expected, at most, �nite time convergence
only in the measure point, but, exponential convergence at
the rest of the space.
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I-D. Main contribution of this paper
In this paper it is presented the combination of sliding

modes approach and the backstepping-like transformation
applied into systems described by a class of parabolic partial
differential equations in order to make an observer design
for parabolic PDE. This paper is organized as follows.
Section II �rst describes the class of PDE and boundary
conditions in which a plant must be described in order to
be capable to be observed. Secondly, it is presented a non
linear transformation which represents this class of PDE
in an particular form that is wanted to directly apply the
observer design.
Section III introduces the proper structure of the observer.

This observer is described by almost the same equation
than the plant just by adding two new error correction
functions which injects the measured output that is only
aviable at the boundary x = 0. Then the error dynamics
are obtained and it is introduced an Volterra-like integral
transformation with the aim of transform the error dynamics
into an exponentially stable target system. The stability of
the target system is proved using Lyapunov theory which
has had recently advances in sliding modes theory (Dávila
y Fridman, 2009). The theorem presented next summarizes
the conditions needed to demonstrate the capability of apply
the Volterra-Like integral transformation.
Proof of the theorem is presented in section IV where

the explicit conditions are detailed. The kernel behavior
modelled by hyperbolic PDEs and the output injection
functions in the observer structure are obtained. This section
ends with another theorem necessary to verify the Volterra-
like transformation causality.
Proof of this new theorem is presented in section V. The

existence of another kernel modelled by another hyperbolic
PDEs shows that the integral transformation is invertible
and then causal.
Finally, section VI presents the conclusions.

II. CLASS OF PARABOLIC PDE
Lets consider the following class of parabolic PDE:

ut (x; t) = auxx (x; t) + b (x)ux (x; t)
+c (x)u (x; t) + g (x)u (0; t)

(1)

where

ut (x; t) :=
@u (x; t)

@t

ux (x; t) :=
@u (x; t)

@x
uxx (x; t) :=

@2u (x; t)

@x2

The PDE domain is x 2 [0; 1] ; t > 0 and its boundary
conditions are

ux (0; t) = qu (0; t)
u (1; t) = U

(2)

Parameters and nonlinear functions involved in (1) ful�ll
the assumptions given in

a > 0; q 2 R b (�) ; c (�) 2 C1 [0; 1]R
c (x) dxjx=1 = �� f 2 C1 f[0; 1]� [0; 1]g

In (Balogh y Krstic, 2004), it has been shown that without
loss of generality, b (x) can be set to zero since there exist
a nonlinear transformation

u (x; t)! u (x; t) er(x) r (x) := � 1

2a

Z x

0

b (y) dy

such that (1) may be converted into

ut (x; t) = �auxx (x; t) + �c (x)u (x; t) + �g (x)u (0; t)

where

�a := a

�c (x) := �bx(x)�
1

4a
b2(x) + c (x)

�g (x) :=
g (x) er(0)

er(x)
; r(x) > �1

Boundary conditions described in (2) indicate that PDE
(1) is actuated at x = 1 (nonetheless if the actuation
is Dirichlet or Neumman) by an input U (t) that can be
selected as a function of time or a feedback design.

III. SLIDING MODE OBSERVER
The observer is in the anticollocated setup according with

(Krstic y Smyshlyaev, 2008) and it satis�es the following
parabolic PDE

ût (x; t) = �aûxx (x; t) + g (x)u (0; t) + �c (x) û(x; t)
+K0 (x) sign (u (0; t)� û (0; t))
+K1(x) (u (0; t)� û (0; t))

ûx (0; t) = qu (0; t) +K2(t)sign [u (0; t)� û (0; t)]
+K3~u (0; t)

û (1; t) = U(t)
(3)

The output's error injection functionsK0 (x),K1 (x),K2

and K3 should be designed using the backsteeping proce-
dure proposed in (Krstic y Smyshlyaev, 2008), (Krstic y
Smyshlyaev, 2005). Following the above mentioned method,
the output injection is applied in the boundary as well as
in the whole spacial domain (8x 2 [0; 1]).The observation
error is de�ned as follows

~u (x; t) := u (x; t)� û (x; t)

and its dynamics satis�es the following parabolic PDE

~ut (x; t) = a~uxx (x; t) + c (x) ~u (x; t)�K0 (x) sign (~u (0; t))
�K1(x)~u (0; t)

~ux (0; t) = �K2sign (~u (0; t))�K3~u (0; t)
~u (1; t) = 0

(4)
Gains matrices K0 (x), K1 (x), K2 and K3 should be

selected to stabilize the error dynamics (4). The problem
will be solved using the backstepping-technique described
in (Cochran y Krstic, 2006), (Krstic y Smyshlyaev, 2005)
and (Xu y Krstic, 2007). This method uses a integral
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transformation, that is a backstepping-like coordinate trans-
formation

~w (x; t) = ~u (x; t)�
xZ
0

K (x; y) ~u (y; t) dy (5)

The application of such transformation makes the error
system (4) be transformed in an exponentially stable (for
~� � 0) system:

~wt (x; t) = �a ~wxx (x; t)� ~� ~w (x; t)
+ ~K0(x)sign( ~w(0; t)) + ~K1(x) ~w(0; t)
~wx (0; t) = �q1 ~w (0; t)� q2sign( ~w(0; t))

~w (1; t) = 0

(6)

It is easy to proof that the target system (6) is exponen-
tially stable since there exist a Lyapunov function which
demonstrate, under the assumptions given before, that (6)
converge exponentially to ~w = 0 for every x and for every
initial condition.
Therefore the main result regarding to this anti-collocated

observer is described by the following theorem.
Teorema 1: Let the system be in the form (1) with the

condition mentiond in (2). Let the designed observer be
(3). Then the error dynamic is given by (4). The integral
transform shown in (5) transforms the error dynamic into
the exponentially stable system desbribed in (6) which
ensures that the observer (3) converge exponentially.into the
system (1).
The proof of this theorem is shown in next section.

IV. DIRECT TRANSFORMATION. PROOF OF THE
THEOREM

Let the target system (6) and the integral transformation
(5). Differentiating (5) with respect to time, it is obtained:

~wt (x; t) = ~ut (x; t)�
xZ
0

K (x; y) ~ut (y; t) dy

Substituting ~ut (x; t) one gets

~wt (x; t) = a~uxx (x; t) + c (x) ~u (x; t)
�K0 (x) sign (~u (0; t))

+

xZ
0

c (y) ~u (y; t)K (x; y) dy

�
xZ
0

K0 (y) sign (~u (0; t))K (x; y) dy

�
xZ
0

K1 (y) ~u (0; t)K (x; y) dy +

xZ
0

a~u (y; t)K (x; y) dy

+a~ux (x; t)K (x; x)� a~ux (0; t)K (x; 0)
�a~u (x; t)Kx (x; x) + a~u (0; t)Kx (x; 0)

Now, differentiating twice with respect to x,

~wxx (x; t) = ~uxx (x; t)�
�
d

dx
K (x; x)

�
~u (x; t)

�K (x; x) ~ux (x; t)�Kx (x; x) ~u (x; t)

�
xZ
0

Kxx (x; y) ~u (y; t) dy

Considering the transformation (5) and simplifying we
get

�
~�+ c (x)� 2aKx (x; x)� a

�
d

dx
K (x; x)

��
~u (x; t)

+

xZ
0

[aKyy (x; y) + ~�K (x; y)] ~u (y; t) dy

+

xZ
0

[c(y)K (x; y)� aKxx (x; y)] ~u (y; t) dy

� ~K0(x)sign(~u(0; t))�K0 (x) sign (~u (0; t))

�K1(x)~u (0; t)� ~K1(x)~u(0; t)

�
xZ
0

K0 (y) sign (~u (0; t))K (x; y) dy

�
xZ
0

K1 (y) ~u (0; t)K (x; y) dy

�a~ux (0; t)K (x; 0) + a~u (0; t)Kx (x; 0) = 0

This equation can be satis�ed in the following equations
are ful�lled

~�+ c (x)� 2aKx (x; x)� a
�
d

dx
K (x; x)

�
= 0

�aKxx (x; y) + ~�K (x; y) + c(y)K (x; y) + aKyy (x; y) = 0
K (x; 0) = 0, K (1; y) = 0

(7)
Integrating along x the �rst equation of (7) we get

~�x+
R
c (x) dx� 2aK (x; x)� aK (x; x) = 0

K (x; x) =
~�x+

R
c(x)dx
3a

Then the kernel dynamics are described in (7) and the
output injection functions are:

K0 (x) =

xZ
0

K0 (y)K (x; y) dy � ~K0(x)

K1(x) =

xZ
0

K1 (y)K (x; y) dy � ~K1(x)

considering the boundary condition we get

~wx (x; t) = ~ux (x; t)�K (x; x) ~u (x; t)

�
xZ
0

Kx (x; y) ~u (y; t) dy
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evaluating in x = 0 we obtain

~wx (0; t) = ~ux (0; t)
= �K2sign (~u (0; t))�K3~u (0; t)

y por lo tanto

K3 = q1 K2 = q2

In order to complete the proof, the following theorem is
needed.
Teorema 2: Let the target system be (6). Let the error

dynamics be described by (4). If there exist a new integral
transformation involving a new kernel dynamics which can
transform the target system (6) into the error dynamics (4)
and if the new kernel dynamics are well de�ned, then the
integral transformation (5) is said to be causal and it is
possible to be applied into observer designed (3)
The proof of this theorem is shown in next section.

V. CAUSALITY PROOF. INVERSE TRANSFORMATION
In order to complete the observer design, it is necessary

to establish that the target system (6) implies stability to
the closed loop system (4) with (5). In other words it is
considered that the integral transformation (5) is invertible.
To achieve this, a new integral transformation is proposed:

~u(x; t) = ~w(x; t) +

xZ
0

L (x; y) ~w (y; t) dy (8)

where L (x; y) is the kernel of this new transformation.
The process that was carried out to obtain this new transfor-
mation depends on the use of the original error system (4)
and the target system (6). Differentiating (8) with respect
to time it is obtained:

~ut(x; t) = ~wt(x; t) +

xZ
0

L (x; y) ~wt (y; t) dy

Using ~wt(x; t), we get

~ut(x; t) = �a ~wxx (x; t)� ~� ~w (x; t)
+ ~K0(x)sign( ~w(0; t)) + ~K1(x) ~w(0; t)

�
xZ
0

~� ~w (y; t)L (x; y) dy

+

xZ
0

~K0(y)sign( ~w(0; t))L (x; y) dy

+

xZ
0

~K1(y) ~w(0; t)L (x; y) dy

+�a ~wx (x; t)L (x; x)� �a ~wx (0; t)L (x; 0)
��a ~w (x; t)Lx (x; x) + �a ~w (0; t)Lx (x; 0)

+

xZ
0

�a ~w (y; t)Lyy (x; y) dy

Following with (8), and differentiating with respect to x
twice we get

~uxx(x; t) = ~wxx(x; t) + ~wx (x; t)L (x; x) + ~w (x; t) dL(x;x)dx

+Lx (x; x) ~w (x; t) +

xZ
0

Lxx (x; y) ~w (y; t) dy

Substituting ~ut(x; t) and ~uxx(x; t) in (4) we geth
�c (x)� ~�� 2�aLx (x; x)� adL(x;x)dx

i
~w(x; t)

+

xZ
0

[�c (x)L (x; y)� ~�L (x; y)] ~w (y; t) dy

+

xZ
0

[�aLyy (x; y)� �aLxx (x; y)] ~w (y; t) dy

+K0 (x) sign (~u (0; t)) +K1(x)~u (0; t)

+ ~K0(x)sign( ~w(0; t)) + ~K1(x) ~w(0; t)

+

xZ
0

~K0(y)sign( ~w(0; t))L (x; y) dy

+

xZ
0

~K1(y) ~w(0; t)L (x; y) dy

��a ~wx (0; t)L (x; 0) + �a ~w (0; t)Lx (x; 0) = 0
In order to conclude this proof, the following conditions

must be satis�ed

�c (x)� ~�� 2�aLx (x; x)� adL(x;x)dx = 0
�c (x)L (x; y)� ~�L (x; y) + �aLyy (x; y)� �aLxx (x; y) = 0

L (x; 0) = 0

~K1(x) =

xZ
0

~K1(y)L (x; y) dy �K1(x)

~K2(x) =

xZ
0

~K2(y)L (x; y) dy �K2(x)

(9)
The kernel L(x; y) satis�es the hyperbolic PDE described

in (9).

VI. NUMERICAL SIMULATION RESULTS
The system considered in this example is described by

the following PDE

ut (x; t) = 0;01uxx (x; t)
� (0;2 sin (�t) + 0;01 sin (2�t) + 0;015 sin (0;5�t))u (x; t)
The data aviable is according with (2) in the boundary

u (0; t) and the control is in the boundary u (1; t) =
sin(1;7�t) + 5.
The dynamics of this system is shown in (1). Where the

initial conditions are chosen arbitrarily
The kernel behavior is shown in �gure (2). It is clear that

the kernel satis�es conditions mentioned in (7). Oscillation
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Figura 1. Fig. 1. Here is shown the system dynamical behabior without
input. The space in x belongs to [0 , 1].

Figura 2. Fig. 2. Evolution of the kernel behavior along x and y.
Oscilations depends on the selected values of a, � and c(x).

along x are given by different values in parameters a and
c(x).
Once the kernel was numerically calculated, the output

injection functions can be numerically calculated too and
the observer is able to be computed. In �gure (3) is shown
the dynamical behavior of the observer with different initial
conditions than those applied to the plant.
As it is not good to plot system and observer in the same

chart, one way to show how does the observer converge to
the system is by plotting the behavior of the error along
time. The �gure (4) shows the dynamical behavior of error
described in (4).
As it was expected, in the boundary x = 0 the observer

converge in �nite time. However, in other values of x the

Figura 3. Fig. 3. Observer dynamics shown here demonstrate the capability
of the observer to reach the system dynamics starting with different initial
conditions.

Figura 4. Fig. 4. Error dynamics goes to zero exponentially in time for
every value of x with different decreasing rates.

convergence is exponential. This can be seen in �gure (5)
where arbitrarily values where chosen to show how is the
evolution of u(x; t) along time when x = 0, x = 0;25,
x = 0;75 and x = 1.

VII. CONCLUSIONS
In this paper was presented an observer design for a

class or parabolic PDEs using sliding modes theory and
backstepping-like procedure obtaining exponential conver-
gence in every x except in x = 0 where �nite time
convergence was achieved. A Volterra-like integral transfor-
mation was used to make coordinates changing from error
dynamics to exponentially stable target systems. Correction
functions in the observer structure are obtained by solving a
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Figura 5. Fig. 5. Convergence in differente spatial points. a) System
dynamics in x = 0 where �nite time convergence was obtained. b)
Exponetial convergence was obtained in x = 0;25. c) Similar results in
x = 0;5 and in x = 0;75 shown in d).

kernel modelled by hyperbolic PDEs. The causality of this
transformation was proved verifying that the invertibility
existence which depends on the existence solution of an-
other kernel in hyperbolic PDE. Sliding modes were used
to �nd an explicit solution to the hyperbolic PDE. Stabil-
ity was proved using Lyapunov theory. Numerical results
demonstrate the effectiveness of applying this observer.
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